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Turbulent shear layers generated from a common splitter plate as well as from a half- 
frame screen are investigated experimentally in the developing regime and in the 
asymptotic regime. The phase-averaged means with time delay of velocity 
fluctuations are analysed in terms of Fourier modes in the frequency domain to give 
both the amplitude and frequency of the local fundamental mode due to the presence 
of the large-scale organized motion. The amplitudes of both the streamwise and the 
transverse components tend to relax to asymptotic values that are independent of 
the velocity ratio as well as the shear-layer apparatus. The Strouhal number St, 
defined as f L/U,, where f is the local fundamental mode frequency, L is the shear- 
layer width and U,, is the average convection velocity of the structures is found to 
be initially dependent on the local Reynolds number. In the asymptotic regime, the 
orientation of the large-scale structures is tilted backward toward the higher-speed 
side in all cases. 

1. Introduction 
Turbulent shear-layer flow has been extensively studied by numerous investi- 

gators. The early experimental study of Liepman & Laufer (1947) showed that 
both mean and fluctuating velocity profiles are nearly self-preserving. The turbulent 
kinetic energy and the zone-averaged statistics based on the intermittency function 
were studied in detail by Wygnanski & Fiedler (1970). Their work has been followed 
by Spencer & Jones (1971), Jones, Planchon & Hemmersley (1973), Pate1 (1973) and 
more recently Champagne, Pao & Wygnanski (1975). All these works were primarily 
focused on statistical descriptions of the flow such as the linear growth rate and the 
self-preserving profiles of various velocity fluctuation statistics. 

Brown & Roshko (1974) and Winant & Browand (1974) demonstrated the 
existence of a large-scale vortex structure in turbulent shear layers at high and 
moderate Reynolds numbers respectively, mainly by flow visualization techniques. 
Subsequent works on the large-scale structure were by Browand & Weidman (1975), 
Dimotakis & Brown (1976), Koochesfahani et al. (1979), Wygnanski et al. (1979), 
Browand & Troutt (1980) and Jimenez (1983, 1985). They showed that these 
structures are visible and measurable near the origin of the flow. It is known now that 
they are responsible for the growth of the shear-layer width by means of vortex 
pairing and/or the increase in their sizes, as they are convected downstream. 

On the other hand, Pui & Gartshore (1979) and Chandrasuda et al. (1978) suggested 
that the nearly two-dimensional large-scale structures observed are rare ; they can 
occur only in favourable conditions such as low free-stream turbulent intensity or 
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laminar boundary layers a t  the splitter plate. Batt (1977) reported that no 
periodicity was found or could be identified from the spectra in his fully developed 
shear layer. 

I n  addition to the study of the large-scale structure characteristics embedded in a 
turbulent shear layer, some parallel studies were aimed a t  understanding the effects 
of initial and boundary conditions on the velocity profiles in the self-preserving state. 
These studies include Batt  (1975), Hussain & Zedan (1978a, b ) ,  Browand & Latigo 
(1979) and most recently Dziomba & Fiedler (1985). They have shown that the state 
of the boundary layers at the splitter plate is critical in the development of the self- 
preserving state of the shear layer. Further studies of a shear layer subjected to 
artificial disturbances near the origin have been undertaken by Ho & Huerrre (1984), 
Oster & Wygnanski (1981), Dziomba & Fiedler (1985) and more recently Gaster, 
Kit & Wygnanski (1985). They suggested that the external periodic disturbances can 
control, in a particular region, the shear-layer growth rate, turbulent intensities and 
the large-scale structure interactions depending upon the frequency and the 
amplitude used. 

Previously, the large-scale structures have been indirectly linked to the extremely 
sensitive initial conditions of the shear layer and found to be relatively weak and to 
contribute a negligibly small fraction of the turbulent kinetic energy (Wygnanski et 
al. 1979). In  order for these structures to be dynamically significant, they must play 
a major role in turbulent momentum transport (Hussain 1983). On the other hand, 
Dimotakis & Brown (1976) showed that these structures are responsible for strong 
periodic velocity fluctuations, noticeably near the shear-layer edges. At present, no 
measurement of the large-scale motions ‘within ’ the fully developed shear layer has 
been reported, when the flow visualization techniques fail to  identify them. 

I n  the present study, we are interested in identifying the presence and the relative 
strength of the large-scale organized structures in the developing regime and in the 
asymptotic regime when they evolve naturally without the presence of any artificial 
forcing. 

2. Experimental apparatus and instrumentation 
The wind tunnel is a closed-return type as used previously by Comte-Bellot & 

Corrsin (1966, 1971). The test section, located after the secondary contraction (ratio 
1.27 : 1 )  has a 1.22 m x 0.91 m cross-section and i t  is 9.5 m in length. 

Two methods of generating shear layers were used in the present investigation. A 
thin aluminium splitter plate 122 cm wide, 50 cm long and 0.206 cm thick was 
located after the secondary contraction a t  the tunnel mid-height. To provide a 
differential pressure drop between the top and bottom flow channels, a single screen 
frame was mounted on top of the splitter plate and a set of three screens was attached 
on the bottom side (figure 1) .  The screens were made of stainless steel with diameter 
of 1.905 mm and a spacing of 24 meshes per inch, giving a geometric solidity ratio of 
0.33. The screens also served as means of smoothing any disturbances created by the 
plate leading edge upstream and reducing the plate boundary-layer thickness 
downstream. A set of steel wires, with a diameter of 0.55 mm, were used to keep the 
splitter front end from possible vibrations and sagging. 

For the second method of generating a shear layer the splitter and the set of 
screens were replaced with a single half-frame screen. The location of this half-frame 
screen is shown in figure 1. The stainless steel screen used was 2.79 mm in diameter, 
with a spacing of 30 per inch and a geometric solidity ratio of 0.55 in order to provide 
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Half-frame screen 
location 

FIGURE 1. The test section of the wind tunnel showing the splitter plate and the location of the 
half-frame screen. 

a sufficient differential pressure drop. The residue velocity fluctuations generated 
from this above the critical value of the screen solidity were measured to be 
negligibly small in the region far downstream in excess of 5000 screen meshes (the 
laboratory coordinates of the half-frame screen experiments to be described below 
are taken to be a t  the location of the screen). At and beyond this distance 
downstream, the mean transverse velocity component measured was found to be 
nearly zero. It appeared that the deflected mean streamlines had become nearly 
parallel again at and beyond x1 = 2.0 m. This is in agreement with a recent study by 
Oguchi & Inoue (1984) who showed that both mean and fluctuating profiles of the 
shear layer generated from a half-frame screen achieve a self-preserving state not far 
downstream. 

All measurements of the mean streamwise velocity component were done by a 
Pitot-static tube and a micromanometer. All velocity fluctuations were measured 
with constant-temperature hot-wire anemometers (DISA type 55DO1), operated a t  
an overheat ratio of 0.6. The transverse and the streamwise components of velocity 
fluctuations within the shear layer were measured with a symmetric X-array meter 
(DISA 55P51), made of two gold-plated tungsten wires 5 pm in diameter and 
1.25 mm in sensitive wire length, giving a length-to-length ratio of 250. The 
minimum Kolmogorov microscale was estimated from the balance between the 
turbulence production term and the dissipation term to be about 0.1 mm (for the 
half-frame screen experiment with AU = 7.08 m/s). This gives a minimum value of 
the microscale-wire-length ratio of about 0.1. The value is rather low for the study 
of small-scale fluctuations ; however, it should be adequate in measurements of the 
large-scale properties such as energy and cross-correlation. No wire-length cor- 
rections were applied to the present data. The signals from the X-array meter were 
low-pass filtered a t  5 kHz (DISA type 55D25) prior to digitization. The maximum 
Kolmogorov frequency was estimated a t  the shear-layer centreline to be about 16 
kHz. The energy loss due to  the analog filtering, however, was found to  be negligible 
in any of the experiment runs. Repeated measurements of r.m.s. values from 20 
records, each record spanning 50-200 integral timescales, showed scatter within a 
few percent. Independent measurements using a single hot wire and an r.m.s. 
voltmeter agreed with the above digitized data, also within a few percent. Two single 
hot wires were positioned outside the shear layer and used as reference signals. The 
velocity signals a t  these positions monitored irrotational velocity fluctuations, 
mainly due to the passage of the large-scale structures. These reference signals were 
filtered a t  about 150 Hz, without losing relevant information. The traversing 
mechanism for the X-array meter is accurate to within 0.2 mm. 
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Half-frame screen 
experiments Splitter-plate experiments 

'1 H 14.6 9.71 12.1 14.7 11.9 

Velocity difference 7.08 5.05 3.30 4.00 4.60 
01, (m/s) 7.52 4.66 8.8 10.7 7.30 

AU = OIH-OIL (m/s) 

Velocity ratios r = 7 0.52 0.48 0.73 0.73 0.61 9, 
UIH 

0.32 0.35 0.16 0.16 0.24 

0.536 0.0510 0.0269 0.0322 0.0406 
dL 

Growth rate ~ 

a, 
Virtual origin x,, (m) 0.533 0.197 -1.84 -1.84 -1.84 

TABLE 1. Shear-layer experiment parameters 

Data acquisition was done using a microcomputer ( IBMPC) with a fast A/D 
converter (Techmar) having a 12 bit resolution. Digitized data were stored on 
streaming tapes and could be later restored for analysis. All computations and 
analysis were done on this microcomputer. Some plots were done on the mainframe 
computer (VAX 780) graphic utility. 

3. Experimental results : time-averaged statistics 
A summary of the flow parameters investigated is given in table 1.  The first 

measurement of each experiment run was to determine the shear-layer width as a 
function of the distance downstream and its growth rate. The mean streamwise 
component of velocity was measured with the Pitot-static tube and a micro- 
manometer. The mean velocity Ol is normalized with ulL and AU = u,,-UIL as 
U* = (O1-UlL)/AU, where OIH and OIL are the mean free-stream velocity on the 
high-speed side and the low-speed side respectively. The shear-layer width L at a 
given xl/h, where x1 is the streamwise laboratory coordinate and h is the tunnel 
height, is defined to be the transverse distance between xZH and xzL where U* is equal 
to 0.9 and 0.1 respectively. The dimensionless transverse coordinate 71 is defined as 
(x2-xzc) /L,  where x2c is the locus of U* = 0.5. 

Figure 2 ( a )  shows loci of xZH, xZL and x 2 ,  for the splitter-plate experiments for 
various AU and velocity ratios r = UIL/UIH. The growth of the shear-layer width L 
is approximately linear from xl/h > 1.5 up to x l / h  = 7. Here the streamwise and the 
transverse coordinates x1 and x2 are normalized with h, the tunnel height, in order to 
show the relative extent of the shear-layer width and the tunnel width. I n  all cases, 
L/h is never above 0.4 a t  the last measurement station. For a fixed r = 0.73, there 
is a slight difference in the shear-layer-width growth rate when AU is increased from 
3.3 m/s to 4.0 m/s. This is unexpected since dL/dx, should be proportional to R = 
AU/(OllH+UlL) (Brown & Roshko 1974). For both cases, the loci of zzH and xzr are 
nearly the same. The difference is on the lower-speed side where the spread of the 
shear-layer width is faster for the case of higher AU or higher & = $(01, + UIL). For 
the flow where r = 0.61, the locus of x2c appears to deviate from the splitter-plate 
plane, as one would expect for a shear layer with a lower r or higher R. 
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FIGURE 2. The growth of the shear-layer width. (a )  Splitter-plate experiments with solid symbols 
representing the loci of = 0 :  0, All  = 4.0 m/s; A, 3.3 m/s; 0,  4.6 m/s. ( b )  Half-frame-screen 
experiments: 0 ,  AU = 7.08 m/s; A, 5.05 m/s. The tunnel height h is 91.5 cm. 

For the half-screen experiments, the shear-layer width grows linearly after about 
x,/h = 2.0 up to about x,/h = 7 (figure 2 b ) .  The spread of the shear-layer widths on 
the lower-speed side and on the higher-speed side are nearly equal and are less 
sensitive to changes in U, for a fixed r or R compared with the splitter-plate 
experiments above. In both types of shear-layer apparatus, the velocity difference 
between the high and low speeds was varied by merely changing the incoming 
uniform flow speed without an appreciable change in R or r .  The velocity ratio r was 
varied by adding or removing an additional screen in the case of the splitter-plate 
experiment. For the half-frame-screen experiment, r was found to be nearly fixed for 
a given screen, depending mainly on the differential pressure drop. 

The normalized mean velocity profiles, plotted with the dimensionless coordinate 
7 are nearly self-preserving, at least in the region where the shear-layer growth is 
linear. Figure 3 shows the normalized mean velocity profiles for both the splitter 
plate and the half-frame screen with AU = 4.6 m/s and 7.08 m/s respectively. Both 
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FIGURE 3. The non-dimensional mean velocity profiles. Splitter-plate experiments, AU = 4.6 m/s ; 
0, x1 = 3.94 m;  A, 5.16 m; 0, 6.38 m. Half-frame-screen experiments, A U  = 7.08 m/s: ., x1 = 
3.27 m;  0,  4.48 m;  V, 5.70 m. The dashed line is the curve (;(I +erf(aT), a = 1.82, 
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FIGURE 4. The streamwise component turbulent intensity profiles. The splitter-plate experiment, 
AU = 4.6 m/s, r = 0.61, R = 0.24: 0. z1 = 3.23 m ;  A, 4.45 m;  0, 5.76 m. The half-frame-screen 
experiment, AU = 7.08 m/s, r = 0.52, R = 0.32: e, x1 = 2.55 m ;  V, 3.77 m;  a, 6.82 m. 

the self-preserving profiles could be approximated by an error function of the type 
U* = t(l +erf(ay)), where a = 1.82 (Townsend 1976; Pui & Gartshore 1979). In  the 
regions outside the turbulent shear layer, the mean velocity profiles are uniform 
within experimental accuracy, except near the walls. In all the experiment runs, no 
increase in the olH or UIL was found with distance downstream. This might have been 
caused by the growth of the boundary layers at the walls. Thus, no wall adjustment 
was required for each experiment. 

Figure 4 compares the streamwise turbulent intensity profiles for both the splitter- 
plate and the half-screen experiments in the self-preserving region. The noticeable 
difference is the distribution of profiles on the lower-speed side, where the profiles for 
the splitter-plate experiment are slightly skew. The reason for this is unclear. 
However, the maximum intensity occurs at about the centreline and is approxi- 
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FIGURE 5. The transverse component turbulent intensity profiles. The flows and the symbols 
are the same as in figure 4. 

't 

mately equal to 0.19 for both experiments despite the difference in R. Figure 5 
shows the corresponding transverse turbulent intensity profiles where the profiles for 
the half-screen experiments are nearly everywhere larger than the splitter-plate 
experiment. The latter experiment has a maximum of 13.5, compared to the value 
of 14.5 for the former experiment. Finally, the profiles of p l z  are compared in figure 
6. A similarity between both experiments is the nearly uniform value of p l z  near the 
centreline, extending approximately from q = -4  to +0.4 with a maximum value of 
about -0.45. The splitter-experiment profile, however, is lower near the origin 
(xl = 3.23 m). At this measuring station, both of the fluctuating velocity intensities 
are self-preserving (figures 4 and 5 ) .  Figure 7 ( a ,  b) shows the development of the 
turbulent intensities for both components plotted in terms of the streamwise 
coordinate x1 -xo, where xo is the virtual origin. Only the flows of A U  = 7.08 m/s and 
4.60 m/s are self-preserving as shown in figure 7 ( a ) .  Other flows reported here are still 
in the development state within the streamwise extent of measurement. All the shear 
layers generated from the splitter-plate experiments reported here appear to 
originate from initially laminar boundary layers. The peaks in the ui/AU profiles first 
increase to their maximum values followed by gradual drops toward their values in 
the self-preserving state (Hussain & Zedan 1978a, b ) .  On the other hand, for the 
shear layer generated from the half-frame screen, the peaks in the u;/AU profiles 
increase monotonically toward the self-preservation value, which is nearly identical 
to the splitter plate experiment a t  R = 0.32. This behaviour is similar to the splitter- 
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FIQURE 7. Development of the turbulent intensities at the shear-layer centrelines, 7 = 0. Splitter- 
plate experiments: A, AU = 3.3 m/s; 0,  4.0 m/s; 0,  4.6 m/s. Half-freme-screen experiments: 
0 ,  AU = 7.08 m/s; A, 5.05 m/s. (a)  u; /AU;  (b)  ui/AU. 

plate experiments with initially turbulent boundary layers (Browand & Latigo 1979 ; 
Dziomba & Fiedler 1985). However, the half-frame-sereen apparatus itself generates 
no boundary layer whether laminar or turbulent. Thus the initial conditions, such as 
the state of the initial boundary layer a t  the splitter-plate trailing edge or the initial 
Reynolds number Re based on momentum thickness, do not alone play a direct role 
in the present half-frame-screen experiments. The streamwise velocity fluctuations 
r.m.s. peak values are extremely sensitive to the initial conditions and relax slowly 
toward the self-preservation state. The transverse component r.m.s. peak values, 
shown in figure 7 ( b ) ,  are much less dependent on the initial conditions. They relax 
to the asymptotic value of about 0.14, regardless of the means of flow-generating 
devices and the velocity ratios. 

4. Detection of the large-scale structure 
4.1. Previous studies 

The existence of large-scale vortical motion in the shear layer originating from a 
splitter plate has been observed using flow visualization techniques by Brown & 
Roshko (1974) and Winant & Browand (1974). Closer to the origin, where the 
vortices are nearly two-dimensional and small-scale fluctuations are not yet set in, 
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the motion of the large-scale structures may be readily inferred from a dominant 
peak of the velocity spectrum. Detailed measurements and analysis of laminar-shear- 
layer instabilities have been given by Freymuth (1966), Winant & Browand (1974) 
and later by Miksad (1972,1973). The generation of subharmonic disturbances is now 
known to be associated with pairing between adjacent vortices. Further downstream, 
these large-scale structures are subjected to other instability modes such as helical 
pairing (Chandrsuda et al. 1978), multiple pairing forming a cluster of vortices (Ho 
& Huang 1982) or partial pairing (Hussain 1983). As a result, small-scale fluctuations 
set in and the velocity spectrum appears as a broad-band turbulence signal. 

There are several approaches to detecting the large-scale structures that are 
embedded in fully developed turbulence. Townsend (1976) measured spatial- 
correlation functions to infer the structure shape and size. A similar approach has 
been followed by Tavoularis & Corrsin (1981) and Mumford (1982). A somewhat more 
systematic approach is the orthogonal decomposition. Payne & Lumley (1966) 
successfully used Grant’s data of a cylinder wake to infer the large-scale structure as 
counter-rotating eddies in pairs. Another technique, phase averaging, has been 
successful in revealing the large-scale structure when the flow is periodic with known 
period (Hussain & Reynolds 1971 ; Cantwell & Coles 1983) or when the flow is forced 
at  a frequency corresponding to the local unstable disturbance (Oster & Wygnanski 
1982). For natural or unforced flow, the passage of the large-scale structure is usually 
inferred from the nearly periodic velocity fluctuations outside the turbulent zone. 
Koochesfahani et al. (1979) were able to measure the circulation associated with the 
vortices within a shear layer. Winant & Browand (1974) and later Browand & 
Weidman (1975) used reference signals coupled with the flow visualization to obtain 
the phase-averaged velocity fields in moderate-Reynolds-number shear layers. 
Hussain (1983) reported several techniques used in a fully developed turbulent 
jet. 

4.2. A physical model of a large-scale structure 
To detect the arrival time of a single isolated large-scale structure within the fully 
developed shear layer, a physical model is needed in place of the flow visualization. 
Figure 8 depicts a single isolated plane vortex with its centre located at a 
displacement c above a fixed coordinate x, from an array of randomly positioned 
plane vortices. The interfaces of the turbulent shear layer or the superlayers (Corrsin 
& Kistler 1955) on the high- and low-speed sides are at rH and rL from the structure 
centre respectively. Outside the superlayer boundaries, the motions can be assumed 
to be irrotational. Each superlayer that separates the turbulent zone from the 
irrotational zone is at any instant in general very irregular but continuous. The 
irrotational motion, however, depends only on the transverse velocity component a t  
the interface (Phillips 1955). In the figure are shown the prescribed transverse 
velocity distributions at the two superlayers that would be caused by the presence 
of a large-scale vortical structure. Both reference frames y and y’ are assumed to 
move at  the structure convection velocity U,. The equation of motion in the 
irrotational zone and the corresponding boundary conditions on the high-speed side 
are 

V”€I(Y) = 0, (1) 

$ H j O ?  yz+co, ( 2 4  

(2b) 
W H  

aYZ 

/ 

and vZH(y2 = 0) = - = A H Sin(k,y,+k,Y,+$H). 
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FIGURE 8. A physical model of the large-scale structure showing the velocity distributions at  
the two superlayers. 

The fixed phase @H of the high-speed-side velocity distribution is n. The solution of 
the above equation satisfying the boundary conditions is 

k is the magnitude of a wave vector k. The corresponding streamwise velocity in the 
moving frame y is 

valid for y 2  2 0. The coordinate transformations from the moving frame to a fixed 
laboratory frame are 

y, = z l - U c t ,  y2 = (22-c)-7H, y, = 5,. 

At t = 0, both frames coincide in the streamwise coordinate. 

is 
Using the above coordinate transformations, the streamwise velocity fluctuation 

ul&, t )  = -- k1 A H  ek(TH+c) epkx2 sin ( k ,  x1 + k,  x, + @H - w t ) ,  (5 )  k 

where w = k ,  U, is the oscillation frequency and $, = 7 ~ .  

side. The result is 
The same analysis can be extended to the irrotational motion on the low-speed 

ulL(x,t) = - % A  ek(7L-c )ekJ2s in (k l z l -k3z , -w t+@L) .  (6) k L  

The relations above are valid for ( z Z - c )  3 7H and (z2 +c)  < -7L respectively, where 
7H and 7L are always positive definite. c is the structure vertical offset from the shear- 
layer centreline where Ol = i(UIH + U,,,). @L is identically equal to zero as a result of 
the velocity distribution on the low-speed side. 

For an array of the large-scale structures randomly positioned in the moving 



Quasi-periodic oscillations in turbulent shear layers 121 

frame, the generalization of the result would be $H = n+$(t) and $L = @(t ) ,  where 
@(t) is the time-dependent phase jitter associated with the random spacing between 
adjacent vortices. Thus both ul, and ulL are quasi-periodic in time in the fixed frame 
with random amplitudes proportional to A ,  ek7H and A ,  ek7L and with dependence on 
the transverse coordinate as e-lclzZl. The crucial feature of the model is that ul, and 
ulL obtained from the two fixed probes will be nearly 180" out of phase (as shown also 
by Winant & Browand 1974). The departure from this phase relationship would be 
expected since the structure shape is distorted as a result of the strain field, inducing 
more complicated boundary conditions than previously assumed in (2 b). 

4.3. Experimental set-up 
At a given distance downstream, two single hot wires were located at between 
7 = 1.1 and 1.3 and at between 7 = -1.1 and -1.3. The hot-wire axes were 
aligned perpendicular to the interfaces and the mean flow so that they were 
sensitive only to the streamwise velocity fluctuations, which presumably were due 
to the irrotational motions caused by the passage of the splitter-plate structures. 
At these positions, the intermittency was close to zero, as checked visually on the 
oscilloscope during data acquisition and later from the spectral analysis. 

Within the turbulent zone, the velocity fluctuations of both components were 
measured with a single X-array meter, positioned in the same plane and at the same 
streamwise coordinate as the reference probes. A tranversing mechanism allowed 
detailed measurement at various 7-coordinates. To minimize possible probe holder 
feedback effects, all the probes were positioned approximately 50 cm upstream from 
the tranversing mechanism. No appreciable difference in results was found when the 
tranversing mechanism was moved f 10 cm relative to the probe streamwise 
coordinate. 

4.4. Computations and phase alignment 
The period of the arrival time of the large-scale vortices was estimated from the 
peaks of the spectra of the streamwise velocity fluctuations of the reference probes 
located outside the turbulent zone. In nearly all the cases, the spectrum peaks 
occurred at the same frequency for both the high- and low-speed sides of the shear 
layer. If there was a measurable difference, the average value of the two was taken. 
The data sampling rate was then set so that there were at least 32-64 sampled data 
points in the period. This limited the phase resolution to between 5" and 10". For a 
given record size, too fast sampling would reduce the number of the structure 
ensembles. At each measurement location, a data set consisted of 20 block of data, 
each block containing 4 records spanning 211 points of about 50 integral time-scales. 
All velocity fluctuation moments computed here were found to be accurate to within 
a few percent. 

The arrival time of the large-scale structure was chosen to be the instant that 
reference signals reached a maximum and a minimum on the high- and low-speed 
sides respectively. The amplitude thresholds were varied from ulH > 0.6, ulL < -0.6 
to ulH > 1.2, uZL < - 1.2. A phase delay between the maximum and the minimum of 
f30" was allowed. The use of two simultaneous reference signals was necessary to 
differentiate between a single isolated structure and a pair of structures in the fusion 
or pairing process (Winant & Browand 1974). The single isolated structure would 
correspond to about 180" phase delay between ulH and ulL, whereas a pair of 
structures would destroy the phase relationship. For each data block, the arrival 
time set t , ,j  = 1, N was obtained from the above conditions. The variations of the 
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amplitude thresholds and the phase delay within the above limits only reduced or 
increased the number of realizations. No significant difference in the ensemble- 
averaged properties was found. 

A component of velocity fluctuation is defined as the sum of the large-scale and the 
random motions, i.e. 

u,(x, t )  = u,,(x, t )  +Ur,(X, t ) .  

(ua(x, t )> = (uca(x, t ) ) ,  

(7) 

Then the phase average of (7) is (Hussain 1983) 

(8) 

where by definition (ur,(x, t ) )  = 0. The difference between each realization and the 
ensemble mean is 

ua(x, t )  - (ua(x> t ) )  = Uqa(X, t )  + ur,(X, t ) ,  (9) 

where uqa(x, t )  = u,,(x, t )  - (u,,(x, t ) ) .  The present definition distinguishes clearly 
between the fluctuations of each realization of the large-scale motion from its 
ensemble mean and the purely random motion. The necessity for this definition is 
clear when considering the time-averaged turbulent kinetic energy 2, i.e. 

(10) 

which assumes that u,, is uncorrelated with either (u,,) or uqa and u,,(uo> = 0. The 
contribution to the total turbulent kinetic energy from the large-scale structures 
consists then of two parts, the ensemble mean part and the quasi-random part. For 
periodic flow, uqa is zero by definition. 

The physical origins of uqa are that structures may have many degrees of freedom 
such as the strength, the structure orientation, the centre offset c,  the structure size 
and modulation in the spanwise direction. The estimate of the magnitude of G, 
however, depends not only on the conditions used in the ensemble averaging but also 
on additional assumptions - such as whether urn, can be regarded as a purely stationary 
time series, i.e. u;, = (u:,). Near the origin, where each structure is in the developing 
state with a limited number of degrees of freedom, the quasi-random part may be 
negligibly small in comparison with the purely random part. In  most fully developed 
turbulent flows, the term may contain a considerable fraction of the total turbulent 
kinetic energy. 

In  addition to the many degrees of freedom of the evolving structure, there is also 
the problem of the uncertainty in detecting the arrival time of the structure centre. 
This arises because, although the reference probes are located locally, their 
instantaneous responses to the presence of the structure are nonlinear. This is also a 
well-known problem when a reference probe is located at the origin and the arrival 
time downstream is estimated from the average convection speed. To remedy this, 
the arrival times were corrected by successive ensemble-averaging and cross- 
correlation (Sokolov et al. 1980). The procedure consisted of obtaining a zeroth-order 
ensemble-averaged mean with time delay of the streamwise velocity fluctuations 
d i n g  the arrival time set obtained from the reference signals according to the 
conditions above. For each realization, a cross-correlation was computed with the 
ensemble-averaged mean. The time Atj was located where the cross-correlation 
function was at positive maximum. The new arrival time was then ti + A t j , j  = 1, I?. 
The first-order ensemble-averaged mean was then computed from this new arrival 
time set. The procedure was repeated until no appreciable change in the ensemble- 
averaged mean could be achieved or no further phase alignment was possible. Only 

u:(x, t )  = (u,a>2 + u;, + u;@ 
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FIGURE 9. Ensemble-averaged means of velocity fluctuations of the splitter-plate experiment, 
Al7 = 4.0 m/s, g = 0 and xl = 3.23 m. Typical realizations of the ensembles are superimposed. 
(a) Streamwise component ; (b )  transverse component. 

2 4  iterations were found to be sufficient for the present phase resolution. No digital 
filtering was applied to the data in the phase alignment process. The number of 
ensembles used in averaging varied between 300 and 500. No significant difference 
was found in the ensemble-averaged mean when using up to 800 realizations. The 
final arrival time set obtained from the ensemble-averaged mean of the streamwise 
velocity fluctuations at each measurement position was then used in all subsequent 
ensemble averaging of other turbulent properties. 

5. Experimental results : phase-averaged properties 
5.1. Phase-averaged means 

The ensemble-averaged means with time delay of the streamwise and transverse 
velocity fluctuations are shown in figures 9 (a ,  b )  with typical realizations super- 
imposed. The immediate observation is that for the realization in figure 9 ( a ) ,  the 
instantaneous u1 shows a similar pattern to its ensemble mean. For the transverse 
component, the ensemble-averaged mean and the realization are much less similar. 
A possible explanation for this is that the large-scale structure consists of a large 
number of vortex sheets which have been rolled up. Only the transverse velocity 
fluctuations are more indicative and appear as large and random spikes. However, 
the ensemble-averaged means of both components are comparable in magnitude. 

Figures 10 and I1 show the ensemble-averaged means of both the velocity 
components and the vector plots in the (z,,t)-plane of the shear layers generated 
from the splitter plate and the half-frame screen respectively. The velocity patterns 
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splitter-plate experiment, AU = 4.0 m/s, z1 = 5.66 m. ( a )  Streamwise component ; ( b )  transverse 
component ; (c) vector plot. 
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FIGURE 12. (a) Spectra of streamwise velocity fluctuations of the half-frame-screen experiment, 
At? = 7.08 m/s, xt = 3.16 m a t  7 = -0.24, -0.87 and -1.28 from the top to the bottom of the 
figure respectively. ( b )  Fourier amplitude of the ensemble-averaged mean of the streamwise 
velocity fluctuations a t  7 = 0, half-frame-screen experiment, A U  = 7.08 m/s and xl = 3.77 m 
(figure l lb ) .  

are similar in appearance. Both the strength of the structure measured by the 
amplitude and the phase relationships between the velocity components are nearly 
the same. 

The arrival time of the phase point corresponds to the mid-points of the 
normalized timescale for both figures. A t  this phase, the ensemble-averaged or the 
phase-averaged means of the streamwise velocity fluctuations show a maximum and 
a minimum a t  the high- and low-speed sides respectively (figures 10a and l l a ) .  As 
a consequence, there is a continuous phase shift of nearly 180" across the shear-layer 
width. The mean positions of the interfaces of the turbulent shear layer can be taken 
to be a t  T,I = 0.5 and -0.5. For the transverse velocity component, the ensemble- 
averaged means are shown in figures 10 (b)  and 11 ( b ) .  A nearly zero or small phase 
shift of the transverse velocity ensemble-averaged means is found across the shear- 
layer width. However, the phase differences between the two velocity components a t  
the shear-layer edges (in the irrotational zone) are found to be about 90". The 
expected values were 180°, according to the physical model shown in figure 8. All the 
phase distributions of both velocity components and the relative phase across the 
shear layer suggest that  the large-scale motion is not unlike the simple physical 



Quasi-periodic oscillations in turbulent shear layers 127 

model, despite the fact that the instantaneous responses between the structure and 
the irrotational motions across the interfaces are nonlinear. The velocity vector plots 
(figures 1Oc and l l c )  also reveal that  the shape of the large-scale structure is not 
circular as in the simplified model, but tilting backward on the high-speed side. 

From the ensemble-averaged mean fields shown, both velocity components of the 
large-scale motions appear to be periodic in time with decaying amplitudes about the 
arrival time or the phase point. The period of the ensemble-averaged means is 
estimated to be independent of the time delay as well as the transverse coordinate 
q ,  for a fixed downstream distance. In  fact, this is nearly the same as the average 
period inferred from the peak of the streamwise-velocity-fluctuation spectrum 
obtained in the irrotational zone. Figure 1 2 ( a )  shows spectra of the streamwise 
velocity fluctuations a t  three transverse positions. Only the peak of the spectrum for 
the motions outside the shear layer can be identified with the passage frequency of 
the structure within the shear layer. The finding that the amplitudes of the ensemble- 
averaged means decay with the time delay is a result of the randomly arriving time, 
not an experimental artifact. 

5.2.  Analysis  of data 
A realization of u,,(x, t )  defined in ( 7 )  can be expressed in terms of the usual Fourier 
series 

u,,(x, t )  = c A,@'") cos (wkt +$, (Wk,  t )  + $:). (11) 

where wk is the oscillation frequency and and $,(wk, t )  are the fixed phase and the 
phase jitter for each oscillation mode. The ensemble-averaged mean or the phase- 
averaged mean of u,,(x, t + 7) ,  where 7 is the time delay, is 

w k 

(U,,(X,t+7)) = c ( A :  cos(w"t+7)+$ , (Wk, t+7 )+$ : ) ) .  (13) 
2 

The t corresponds to an arrival time of each structure or to a constant phase of the 
fundamental mode, i.e. t = C:-$:+$:(t)/wo, where C: = constant. At these instants, 
other mode phases, 

c:( t )  = wkt + $,"(t) + g+: 

may assume any particular values, since wk is not restricted to be rational with 
the fundamental wo, and no probability density function of $2 is known. As a result 
of the large numbers of realizations used in the ensemble-averaging, it can be 
expected that 

(cos (w"t + 7 )  + @(t + 7 )  + g+L,) 
must be zero for any wk + wo and a t  any 7 including 0. Thus the ensemble-averaged 
mean a t  a constant phase of a mode rejects other modes whose phases do not have 
any statistical correlation with the phase of the fundamental mode: 

(U,,(X,t+T)) = ( A ,  COs (w(t+7)+~,(t+7)+g+,)>. (13) 

The superscript 0 of the fundamental mode has been dropped from the above 
expression and omitted in the following discussions. However, the above arguments 
do not imply that other modes of oscillation due to the large-scale motions are 
unimportant or can be ignored. 

To show the effects of the phase jitter, one may assume that A ,  and $,(t) are 
uncorrelated a t  any t +7,  and 4,(t+7) and $,(t) are jointly normal random stationary 
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process with zero means. The first assumption implies that the strength of each 
structure and its arrival time are uncorrelated. The second assumption asserts that 
the random displacement of each structure from its equilibrium position is a normal 
process. With the above assumptions, the relation (13) reduces to 

(u,,(x, t + 7 ) )  = (A,)  exp [ -$i4,] cos [C,+WT]. (14) 
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FIGURE 14. The development of the amplitude profiles for the transverse component. The symbols 
are the same as in figure 13 except in ( c ) :  x ,  z1 = 1.02 m ;  0. 2.55 m ;  V, 3.77 m;  V, 6.82 m. 

For a given downstream position, A,, = q5,(t +7)-q5,(t) and C,  are functions of 7, 
in general. A$, is independent o f t  and u:+= is the variance of A$,. At the origin 7 = 
0, the decaying factor exp [ -$7:fiJ is unity. For a long time delay with +,(t) having 
a finite, integral scale, <A$:) --f 2<&) and the factor exp [ -+ui+,3 approaches a non- 
zero finite value. This value is, however, small enough to be comparable with the 
experimental accuracy. The representation in (14) is in qualitative agreement with 
the experimental results shown in figures 10 and 11. 

It is also possible to estimate the amplitude and frequency of the phased-averaged 
means by Fourier analysis in the frequency domain. First, the phased-averaged 
mean (u,(x, t+  7)) was truncated to only -n < WT < x where exp [ -tcri,,l was still 
close to unity and where o, estimated from the time interval between peaks of the 
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phase-averaged mean a t  y = 0, was the fundamental frequency. The total ensemble- 
averaged mean was reconstructed to  be periodic using the truncated (u , (x ,  t+r)), 
spanning about 40-60 periods depending upon the sample rate. The long record is 
needed to minimize the leakage reduction in the fast Fourier transform (Bendat & 
Piersol 1971). Figure 12(b) shows the oscillation amplitude as a function of 
frequency. The peak corresponds to the fundamental amplitude ( A a ) .  The 
magnitude of the harmonics and other background modes are found to be relatively 
small and negligible in comparison. Periodically, the oscillation amplitude was also 
estimated by graphical means. The results were essentially the same. 

5.3. Amplitude projiles and evolution 

In  figure 13 (a,  b ) ,  the profiles of the streamwise amplitude for the splitter plate are 
compared for the case where the turbulent intensity profiles are still developing 
downstream (AU = 3.3 m/s, r = 0.73) and the case where the profiles are self- 
preserving (ACT = 4.6 m/s, r = 0.61). The noticeable difference between the two cases 
appears to be that the amplitude profiles have two peaks and decay with distance 
downstream in the former case. In the latter case, the initial double-peaked profile 
eventually disappears and evolves to have only a single peak further downstream. 
For the half-frame-screen experiment (ACT = 7.08 m/s, r = 0.52), the amplitude 
profiles are close to self-preserving, similar to the above latter case (figure 13c). 

For the transverse amplitude, the profiles do not show any double-peaked 
appearance (figures 14a-c). In  fact, they are relatively uniform when compared to 
their turbulent-intensity profiles (figure 5). Similarly to the streamwise component, 
the amplitude profiles for the transverse component are nearly self-preserving for the 
shear layers that are self-preserving. 

Figure 15 ( a d )  shows the evolution of the centreline (y = 0) oscillation amplitude 
for the shear layers generated from the splitter plate and the half-frame screen with 
the streamwise coordinate (xl - xo). For the splitter-plate experiments (figure 15a 
and c),  the local fundamental amplitudes ( A , ) / A U  and (A , ) /AU grow initially 
corresponding to the initial roll-up near the origin and achieve maximum values. 
This process is followed by a gradual decay until they reach the asymptotic values 
of about 0.14 and 0.06, for the streamwise and transverse components respectively. 
These asymptotic values obtained are independent of initial conditions (in the 
present experiments) imposed a t  the splitter plate such as the initial momentum 
thickness, boundary-layer conditions or the velocity ratio r .  

For the half-frame-screen experiments, the evolution of the amplitude of the local 
fundamental-mode oscillation is quite different. This trend may be attributed to 
some differences in the initial conditions and the experimental apparatus. In  the half- 
frame experiments, the shear layer contains three-dimensional small-scale fluc- 
tuations well before the large-scale vortices are formed, very weak initially. 
However, the mechanism that generates the vortex elements should be essentially 
the same as the splitter-plate experiments. Despite the differences in the initial 
conditions, the asymptotic amplitudes ( A J A U )  and ( A J A U )  are found to settle a t  
about 0.14 and 0.06, which are the same as for the splitter-plate experiments. 

5.4. Oscillation frequency 

The choice for L as the shear-layer lengthscale used in the present study is based on 
the fact that  it is measured directly, the reasonable success of representing the mean 
velocity profile as f( 1 + erf (ay ) ) ,  where y = x2 - x,,/L, and more importantly it allows 
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one to compare the present data with previous data of other investigators. The 
lengthscale L is directly related to the vorticity thickness 

where a = 1.82, if one assumes that the mean velocity profile can be approximated 
by the error function. 

The fundamental frequency is normalized in terms of the local lengthscale L and the 
relative velocity between the structure convection velocity U, and the velocity of the 
flow virtual origin U, as f L / (  U, - U,). Here f is the observed frequency in the reference 
frame moving at the velocity U,. The dimensionless Strouhal number obtained is 
then Galilean invariant if the frequency and the relative convection velocity are 
measured in the same reference frame. In  the present shear layers, as well as in 
others, the virtual origin can be defined to be the intersection of the loci of x Z H / h  and 
xzL/h,  which is fixed relative to the fixed laboratory frame. The Strouhal number 
then reduces to fL/U,,  where f is now the measured frequency in the laboratory 
coordinate. The convection velocity of the large-scale structure is taken to be the 
average velocity difference between the two streams, on the basis of the flow 
visualization of Brown & Roshko (1974). It should be noted that the mean local 
convection velocity is not necessarily equal to the average velocity difference 
between the two stream (Jones et al. 1973); it  is dependent on the transverse 
coordinate. However, at the shear-layer centreline, the assumed convection velocity 
is nearly equal to the local mean velocity where the frequency is also taken from this 
position. The appropriate lengthscale for the shear layer is taken to be its local value 
a t  the measurement station. This scale is also nearly the same as the average size of 
the structure whose properties are being examined. The inverse local fundamental 
Strouhal number UJLf is shown and plotted as a function of the local Reynolds 
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number Re = AUL/v  in figure 16. Also included in this figure are data of previous 
investigators, including both air and water as the working fluids. This plot suggests 
that the local Strouhal number, St, is dependent on the local Reynolds number, at 
least initially where the flow is in the developing state. If it is interpreted as the 
lengthscale ratio between the streamwise and the transverse directions, figure 16 
shows the relaxation of the structure spacing and the structure size ratio to the 
asymptotic value. The data suggest that it varies between 3 and 4. The mechanisms 
for this relaxation are the large-scale structure fusions, which are discrete and 
random in both space and time, as well as the growth of its size as a result of engulfing 
the irrotational fluid. 

The scatter of S t  in the present study is quite large, but comparable with other 
studies. This does not imply experimental inaccuracies of other investigators. Both 
L and f were obtained graphically from previous reports and are in a sense random 
variables. However, the trend is clear. It should be noted that previously St was 
thought to be constant (Dimotakis & Brown 1976; Winand & Browand 1974) and 
independent of Re.  

6. Summary 
In the present study, the shear layers were generated from a common splitter plate 

as well as from the half-frame-screen apparatus. For the shear layers, which are self- 
preserving from both types of apparatus, the mean velocity profiles, the maximum 
turbulent intensities a t  the centreline and the large-scale structure amplitudes are 
asymptotically equal. The orientation of the structure appears to be tilting backward 
on the high-speed side. For the shear layers that are still in developing state, the 
large-scale structure amplitudes also asymptote to nearly the same values regardless 
of the generating devices even though the turbulent intensities are still evolving 
with the distance down-stream. A common feature of all the shear layers investigated 
is the initially strong dependence of the local S t  on Re.  
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